隨著IEEE 802.11(WLAN)、IEEE 802.16(WMAN)、IEEE 802.15.4(WPAN)等無線通信網絡標準的建立,傳統的無線通信產品開發及生產方式已表現出不少問題,譬如:產品是針對特定的標準中一個版本開發 和製造,當新技術出現或版本升級或提供新業務時,只能開發新的專用芯片,製造新一代設備。結果是要麼限制了新技術和新業務的使用,要麼給製造商、運營商帶 來更大的投資風險,給用戶帶來諸多不便。面對此類問題,學術界和產業界已經進行了大量的研究,大部分專家認為,軟件無線電(Software- Defined Radio,簡稱軟件無線電)[1]是一個解決全球無線通信需求的方案,它將成為未來無線通信設備設計的核心所在。所謂軟件無線電,就是採用數字信號處理 技術,在可編程控制的通用硬件平台上,用軟件來定義實現無線電的各部分功能:包括前端接收、中頻處理以及信號的基帶處理等,即整個無線電從高頻、中頻、基 帶及控制協議部分全部由軟件編程來完成。其核心思想是在儘可能靠近天線的地方使用寬帶的數字模擬轉換器,儘早地完成信號的數字化,從而使得無線電的功能儘 可能地用軟件來定義和實現。總之,軟件無線電是一種基於數字信號處理設備,以軟件為核心的嶄新的無線通信體系結構。當前的軟件無線電結構的功耗大、成本 高,而功耗和成本是無線移動便攜設備的兩個關鍵參數,因而制約了軟件無線電的大推廣使用,隨著FPGA(現場可編程邏輯陣列)和模數數模變換器技術的不斷 發展,新一代SOPC(System on a programmable chip,可編程片上系統)正使軟件無線電從概念變為現實。
1 軟件無線電的基本結構
軟件無線電統的基本結構如圖1所示,它包括了寬帶/多頻段天線、多頻段射頻轉換器、寬帶AD(模數變換器)和DA(數模變換器)及數字信號處理 部分[1]。由圖1可以看出,數字信號處理部分是軟件無線電實用化過程中的核心和關鍵部分之一。數字信號處理部分通常包括分立的FPGA、 DSP(Digital Signal processor,數字信號處理器)及GPP(general purpose processor,通用微處理器),FPGA和DSP在GPP的控制下完成中頻處理、調制解調、基帶處理以及信源處理等任務,GPP一般使用 RTOS(real time operation system,實時操作系統)進行任務調度和存儲器管理。當前的軟件無線電結構可以稱為專用資源結構,每個無線信道專用一套處理資源,包括AD、DA、 FPGA、DSP及GPP。實現N個信道,需要N套專用設備。這種專用資源結構對軟件無線電的功耗和成本極其不利,大大制約了軟件無線電的大規模使用,成 為軟件無線電實用化過程中的一大障礙。
圖1 軟件無線電節點基本結構